
Bandgap reference

Neglect the channel modulation of the MOSFETS and the base currents of the BJTs. The OpAmp is supposed ideal. Q4 and Q3 are composed on m bipolars in parallel.

1- Show the inverting and non-inverting node of the OpAmp on the schematic and justify your choice.

Without loop V_Y is higher than V_X , due to the resistor R. the negative feedback at Y set lower V_Y and set it equal to V_X . Since the OpAmp drives an inverting stage (i.e. common source amp.), negative feedback at Y means non-inverting node is Y.

2- Give the expression of I_{ref} versus temperature. Is-it PTAT or CTAT?

 $I_{re}f = 2 \text{ nU}_T \ln(m) / (R) = 2 \text{ nkT } \ln(m) / (qR), \text{ PTAT if TCR is negative.}$

3- Give the expression of V_{out} and $\partial V_{out}/\partial T$.

$$\begin{split} V_{out} &= 2n \; (L+1) U_T ln(m) + V_{eb4} + V_{eb3} \approx 2n \; (L+1) U_T ln(m) + 2 V_D \\ \partial V_{out} / \partial T &= (85 \; \mu V/^{\circ} C) \; 2n \; (L+1) \; ln(m) + 2 (-1.6 \; m V/^{\circ} C)) \end{split}$$

4- Determine the value of L in order to have a bandgap reference (i.e. Temperature independent reference). (2pts)

```
L = 3.2 \ 10^3 / (170 \ nln(m)) - 1
```

5- Numerical application: For m = 8. T = 300K and n = 1 a. Determine: L, and V_{out} . (2pts)

```
\begin{array}{l} L=3,\!2\ 10^3/\ (170\ ln(8))\ -1=8\\ V_{out}=2n\ (L+1)U_Tln(m)+V_{eb4}+V_{eb3}=2n\ (L+1)U_Tln(m)+2nU_Tln(I_{ref}/mI_s)\\ We\ cannot\ calculate\ precisely\ V_{out}\ if\ we\ don't\ know\ the\ values\ of\ I_{ref}\ ,\ m and I_s. We can only estimate its value by using the approximation: V_{eb}=nU_Tln(I_{ref}/mI_s)\approx 0.7V\ and\ thus;\\ V_{out}\approx\ 2\ (8+1)\ 26\ 10^{-3}\ ln(8)+2x\ 0.7\approx 2.37\ V \end{array}
```

6- Assume that bipolar transistors have a finite current gain β (i.e. we consider their base currents). Calculate the error in the output voltage V_{out} .

```
\begin{split} &V^*_{out} = 2 \; n(L+1)U_T ln(m) + V_{eb4} + V_{eb3} \\ &= 2n \; (L+1)U_T ln(m) + nU_T ln(I_{ref}/I_s) + nU_T ln((I_{ref}+I_b)/I_s) \; \; avec \; I_b = I_{ref}/\beta \\ &= 2n \; (L+1)U_T ln(m) + 2nU_T ln(I_{ref}/I_s) + nU_T ln(1+\beta^{-1}) \\ &= V_{out} + nU_T ln(1+\beta^{-1}) \end{split} The error due to finite current gain \beta is nU_T ln(1+\beta^{-1})
```

7- Suppose that OpAmp has an offset voltage V_{os} (i.e. Voltage difference at the input of the OpAmp V_+ - V_- is not zero but V_{os}). Calculate the error in the output voltage V_{out} . (2pts)

```
\begin{split} & Consider\ that\ V_{os} = V_Y \text{-}\ V_X \\ & In\ this\ case\ I_{re}f = 2n\ U_T ln(m)\ /\ (R)\ + Vos/R \\ & And \\ & V^*_{out} = 2n\ (L+1)U_T ln(m)\ + V_{eb4}\ + V_{eb3}\ + (L+1)\ Vos \\ & The\ error\ due\ Vos\ is\ (L+1)\ Vos \end{split}
```

8- Comment on the effect of the two BJT branches compared to the topology with only one BJT branch. (2pts)

Band gap with two BJTs allows for a higher Vout for while the effect of Vos remains the same.

9- Is this topology useful for a sub-1V bandgap?

No the minimum value of Vout is about 1,4 V due to the stack of the two BJTs.